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1 Introduction
This report aims to analyse the current medical needs and technologies for osteoarthritis (OA)
and propose a novel solution to slow OA progression and promote regeneration.

2 Current Medical Needs

Osteoarthritis (OA) is the most common form of arthritis that affects 7% (~500 million) of the

global population [1]. Ageing is strongly correlated to a decrease in cartilage elastic modulus
[2], and therefore, one of the major risk factors of OA. Roughly 13% of women and 10% of
men aged 60 or above suffer from symptomatic knee OA [3]. Notably, OA is not yet. reversible,
and current non-surgical treatments can only reduce pain and alleviate the symptoms [4]. There

is an urgent need for novel ideas to improve OA treatments.

Lubrication of cartilage within joints fosters tissue interaction and affects the mechanical
properties of the tissue in joints. It acts as a boundary lubricant to provide nearly frictionless
motion of joints [5, 6]. It is worth noting that the low concentration of lubricin can be observed
in some OA cases, leading to decreased cartilage boundary lubricating function [7]. Lubricin
is also able to protect articular chondrocytes against apoptosis [8]. Joint lubrication dysfunction
is the main cause of OA, incurring loss of joint mechanical properties and tissue degradation.
In cases of cartilage injury, structural damage occurs in the cartilage surface layer, leading to
the loss of extracellular matrix (ECM) proteoglycans and disruption of collagen fibres.

Selecting suitable biomaterials for OA treatment involves balancing the physical properties to
create materials that mimic natural cartilage’s natural mechanical properties, including

mechanical strength, stiffness, viscoelasticity and surface topography.

One must consider the cell-cell interaction and cell-ECM interaction for tissue regeneration
and symptom alleviation, and the hydrogel must closely mimic the biological properties of
cartilage, including immune response, osteointegration, and material exchange [9]. However,
the existing hydrogels cannot perfectly align with the needs of cell regeneration for OA. In this

regard, there is an urgent need for a novel technology to address these challenges.

3 Current Technologies

3.1 Hydrogels for Cartilage Repair
There are currently many hydrogel formulations targeted at cartilage repair. GelMA (gelatin
methacrylate) is biodegradable, can undergo gelation with visible light, and has high, long-

term viability of encapsulated human-bone-marrow-derived mesenchymal stem cells [10].



Physically cross-linked PVA (polyvinyl alcohol) hydrogel is biocompatible, biodegradable,
chemically stable, and has high water content [11]. Chitosan-based hydrogel possesses drug-
delivery capacities and antimicrobial properties [12].

However, these hydrogels suffer from poor mechanical properties, low solubility and
integration, and lack of biofunctionality and bioactivity [11, 13, 14], making them inadequate
for use in cartilage repair despite their advantages.

3.2 Doped Hydrogels for Cartilage Regeneration
Doping the hydrogel with drugs can provide therapeutic effects in addition to mechanical
support, fostering cartilage regeneration. Multiple factors, including the drug’s integration with

hydrogel, side effects, and stability, should be considered when selecting a drug candidate.

Corticosteroid is an anti-inflammatory and pain relief drug. Due to its rapid action and short
half-life, it is mainly used for short-term alleviation of osteoarthritis. However, it is worth

noting that it may lead to osteoporosis and hyperglycaemia [15, 16].

Bone morphogenetic proteins promote the differentiation of mesenchymal stem cells into
chondrocytes and stimulate the production of extracellular matrix components and bone growth;
however, their side effects include ectopic bone formation and osteoclast activation, leading to

joint dysfunction, osteolysis, bone subsidence [17], and potential tumour formation [18].

Common drug integration methods include stable chemical bonding via thiol-maleimide

couplings [19] and crosslinking via Diels-Alder reactions [20].

4  Proposed Solution

4.1 Description

We propose a long-term solution by incorporating the lubricating properties of HPX into a
PVA hydrogel doped with HIF-1a. and PHIs encapsulated in chitosan nanoparticles and MMP
inhibitors to treat early OA. Our solution aims to provide joint lubrication, promote tissue
regeneration, alleviate symptoms, and prevent further degradation. The doped HPX/PVA

hydrogel will be injected intra-articularly into the diseased joint.

4.1.1 HPX/PVA

PVA is chosen as the hydrogel base, while HPX, a HA/PA+HA/PM polymer matrix, is selected
as the lubricant. HA/PA (hyaluronic acid/ poly-2-acrylamide-2-methylpropanesulphonic acid)
and HA/PM (hyaluronic acid/ poly-2-methacryloyloxyethyl phosphorylcholine) are

hyaluronan backbone complexes grafted with brush-like lubricin-like hydrophilic polymer side
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chains and amphiphilic lipid-like polymer side chains, respectively [21]. HA/PA and HA/PM
inherit lubricating properties from their water-binding sulphonate and phosphorylcholine
groups, respectively [21]. The sulphate groups can indirectly bind with collagen via fibronectin
[22, 23], stabilising the matrix. These properties allow HPX to form a stable lubrication layer
to reduce the wear of the joint cartilage when injected intra-articularly [21] and prevent further
formation of chondral debris due to lubrication dysfunction. While HA/PA or HA/PM alone
can reduce friction, HPX can mimic the friction coefficients of human synovial fluid [21].

4.1.2 Chitosan Nanoparticle-Encapsulated HIF-1a

HIF-1a (hypoxia-inducible factor 1-a) is a transcriptional factor that regulates the growth cycle
and homeostasis of chondrocytes [24], and its stabilisation suppresses chondrocyte
hypertrophy [25]. The underproduction of HIF-1a can lead to apoptosis and autophagy
suppression [26], making it a significant contributing factor for OA progression, given a normal
hypoxic condition. If HIF-1a can be increased, hypoxia-induced apoptosis can be blocked and
inhibit mitochondrial dysfunction [27]. Therefore, introducing chitosan nanoparticle-

encapsulated HIF-1a via the hydrogel can supplement the supply and curb OA progression.

4.1.3 Chitosan Nanoparticle-Encapsulated Prolyl Hydroxylase Inhibitor

PHD (prolyl hydroxylase) is a proteasome responsible for the prolyl hydroxylation pathway,
which is the primary degradation pathway for HIF-1a [28]. By incorporating 1,4-DPCA (1,4-
dihydrophenonthrolin-4-one-3-carboxylic acid), a competitive PHI (PHD inhibitor), into the
hydrogel, HIF-1a can be stabilised, and its degradation slowed [28, 29]. This allows the HIF-
lo released from the nanoparticles to be more long-lasting and prolong the life of HIF-1a
naturally synthesised by the body. However, 1,4-DPCA is hydrophobic [30], and must be

bundled in chitosan nanoparticles to integrate the inhibitor effectively.

4.1.4 MMP Inhibitors

In OA, chondrocytes lose their phenotypic stability and express ECM-degrading MMPs
(matrix metalloproteinases), with MMP13 being the significant contributing collagenase [31].

ECM remodelling causes cartilage thinning and inflammation, leading to the symptoms of OA.

Compound 24f (4-{(R)-carboxy-[5-(4’-ethoxyphenyl)-thiophene-2-sulphonylamino]-methyl}-
piperidine-1-carboxylic acid isopropyl ester) is a carboxylic acid-based competitive MMP
inhibitor that not only inhibits MMP13, but also other MMPs like MMP3, 9, 13, and 14, without
significantly inhibiting MMP1 or TACE (TNF-a converting enzyme) [32]. Incorporating 24f

can protect the joint long-term by preventing further degradation and allowing tissue healing.



4.2 Advantages

4.2.1 Superior Mechanical Strength, Lubrication, and Wear Resistance

While PVA (polyvinyl alcohol) hydrogels have good biomimetic properties, they have poor
mechanical strength and friction coefficients compared to natural cartilage and low wear
resistance with 36.5% weight loss after 2000 cycles [14]. However, these problems can be
mitigated if lubricative polymers are added to the PVA [14, 33].

When 5% of HA/PA and 1% of HA/PM by weight are mixed into PVA, forming ASM1, the
wear can be reduced three-fold, and friction by ~30%; moreover, the compressive modulus
(325.3 kPa) of A5M1 is 12% higher than that of PVA, putting it within the range of natural

human cartilage, while the post-load recovery is higher than natural cartilage [14].

HPX/PVA hydrogel is thus superior to PVA in terms of mechanical strength, lubrication,
elasticity, and wear resistance while maintaining its biomimetic capacity, making it preferable

for our application.

4.2.2 Long-Term Responsive Osteoarthritis Suppression

Despite the utility of HIF-1a as mentioned above, it only has a half-life of five to ten minutes
when exposed to proteases like PHD [34], which is the case in OA, making it a poor candidate

for a long-term solution conventionally.

By encapsulating the HIF-1a in nanoparticles made with chitosan, a chitin-derived polymer,
its half-life can be significantly increased [35], increasing long-term effectiveness. This
encapsulation allows us to sidestep the transiency of HIF-1a brought on by rapid degradation,
opening the possibility of becoming a feasible candidate for a long-term treatment solution.

Chitosan is highly soluble in acidic conditions due to its protonated amino groups (pKa < 6.05)
[36]. If OA progresses, the pH of synovial joint liquid will decrease to be as low as 6.0 [37],
which can trigger the acidic hydrolysis of the chitosan nanoparticles and increase the release

of HIF-1a. Hence, it can also be a responsive therapeutic agent to OA progression.

4.2.3 Chitosan Nanoparticle-Encapsulated Prolyl Hydroxylase Inhibitor

In addition to overcoming the hydrophobicity of 1,4-DPCA, as mentioned above, bundling the
inhibitor in chitosan nanoparticles also allows us to control the ratio between 1,4-DPCA and
HIF-1a and release them simultaneously to increase the effectiveness of both species.



4.3 Feasibility

4.3.1 Chitosan Nanoparticles

The nanoparticles can be crosslinked with sulphonate groups [38] and phosphorylcholine
groups [39], which makes it very soluble in the gel and thus binds to the desired tissue in the
OA joint. As mentioned above, this property of chitosan nanoparticles can also be harnessed
to overcome problems HIF-1a and 1,4-DPCA suffer from and integrate them into the hydrogel.

4.3.2 Compound 24f
Since ECM remodelling by MMPs is a chronic change, they must be inhibited over a long time

to allow tissue regeneration for this strategy to be effective. 24f has a very low dissociation
constant (MMP13 K; = 0.19 nM), making it a pseudo-irreversible inhibitor, allowing it to have
a longer duration of action and be effective even in lower concentrations [32]. Moreover, 24f

is carboxylic acid-based and hydrophilic. 24f is a feasible choice of inhibitor for our application.

4.4 Limitations

HIF-1a has pivotal importance in promoting chondrocyte phenotype, regulating ECM, and
playing a cytoprotective and death-promoting role in OA [40]. Its widespread role implies that
any change could cascade to affect multiple pathways, including SOX-9, type Il collagen, and

aggrecan expression [41]. The dose and concentration of HIF-1a must be delicately controlled.

Chitosan nanoparticles may induce toxicity regarding organ damage and cardiotoxicity if they
migrate to unintended recipient organs [42]. Although difficult, this issue can be solved by

controlling the size of nanoparticles to ensure they will not mistakenly travel to other locales.

5 Teamwork

5.1 Individual Contributions

Name Contributions (Report & Presentation)

AU Wai Tak, Wales Current Technologies

CHAN Cheuk Ka Solution, Solution Research

HO Yu On Current Medical Needs, Solution, Novel Ideas
WAN Chun Kit

LAM Chi Ho Current Technologies

5.2 Reflection

Our team has collaborated sufficiently and effectively to produce a satisfactory report.
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